Retake Exam

Mathematical Methods of Bioengineering Ingenería Biomédica - INGLÉS

21 of June 2019

The maximum time to make the exam is 3 hours. You are allowed to use a calculator and two sheets with annotations. IMPORTANT: Question 2 A is only for "alumnos nuevo ingreso" and question 2 B is only for "alumnos veteranos".

Problems

1. Consider the surface $z=x^{2}-6 x+y^{3}$.
(a) (1 point) Find the tangent plane at the origin.
(b) (1 point) Find the point/s on the surface, where the tangent plane are parallel to the plane $\pi: 4 x-12 y+z=7$.

SOLUTION

(a) The formula for the tangent plane of a (explicit) function is:

$$
z=f(a, b)+f_{x}(a, b)(x-a)+f_{y}(a, b)(y-b)
$$

Substituting at the origin, $(a, b)=(0,0)$, we simplify to:

$$
z=0+f_{x}(0,0)(x-0)+f_{y}(0,0)(y-0)
$$

Now computing the partial derivative we get $f_{x}(x, y)=2 x-6$ and $f_{y}(x, y)=3 y^{2}$. So evaluating it at the origin,

$$
\begin{align*}
& z=0-6(x-0)+0(y-0)=-6 x \tag{1}\\
& z=-6 x \tag{2}
\end{align*}
$$

(b) We write the tangent plane formula in the same form as π :

$$
\begin{aligned}
-f_{x}(a, b) x-f_{y}(a, b) y+z & =D, \quad D=f(a, b)-a f_{x}(a, b)-b f_{y}(a, b) \\
4 x-12 y+z & =7
\end{aligned}
$$

Because the planes are parallel we conclude that,

$$
\begin{aligned}
& 4=-f_{x}(a, b)=-(2 a-6) \rightarrow a=1 \\
& -12=-f_{y}(a, b)=-\left(3 b^{2}\right) \rightarrow b= \pm \sqrt{4}= \pm 2
\end{aligned}
$$

Figure 1: Surface from ex. 1.
2. A. Consider the function $f(x, y)=\frac{\sin \pi x}{1+y^{2}}$.
(a) (1 point) Find the critical points of f.
(b) (1 point) Find the extrema nature of the critical point $\left(\frac{1}{2}, 0\right)$.

SOLUTION

(a) We compute the gradient and find when it becomes $\overrightarrow{0}$.

$$
\nabla f(x, y)=\left(\frac{\pi \cos \pi x}{1+y^{2}}, \frac{-2 y \sin \pi x}{\left(1+y^{2}\right)^{2}}\right)
$$

The denominator is always positive so the vector will be zero when the numerator is. For the first component,

$$
\pi \cos \pi x=0 \Longleftrightarrow \cos \pi x=0 \Longleftrightarrow x=\frac{1}{2}+k, k \in \mathbb{Z}
$$

For the second component,

$$
-2 y \sin \pi x=0 \Longleftrightarrow y=0 \text { or } \sin \pi x=0
$$

But $\sin \pi x=\sin \pi\left(\frac{1}{2}+k\right)= \pm 1$ so to annul the first and second component of ∇f at the same time, $y=0$. So, there are infinite critical points of the form:

$$
P_{k}=(1 / 2+k, 0), k \in \mathbb{Z}
$$

(b) We need to compute the Hessian Matrix and apply the criterion. For that we compute the second order derivatives.

- $f_{x x}=\frac{-\pi^{2} \sin \pi x}{1+y^{2}}$
- $f_{x y}=\frac{-2 \pi y \cos \pi x}{\left(1+y^{2}\right)^{2}}$
- $f_{y y}=\frac{-2 \sin \pi x\left(1+y^{2}\right)^{2}-2\left(1+y^{2}\right) 2 y \cdot(-2 y \sin \pi x)}{\left(1+y^{2}\right)^{4}}=\ldots=\frac{\sin \pi x\left[-2+6 y^{2}\right]}{\left(1+y^{2}\right)^{3}}$

Then,

$$
\begin{array}{cc}
H_{f}(x, y)=\left(\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right)= \\
{\left[\begin{array}{cc}
\frac{-\pi^{2} \sin \pi x}{1+y^{2}} & \frac{-2 \pi y \cos \pi x}{\left(1+y^{2}\right)^{2}} \\
\frac{-2 \pi y \cos \pi x}{\left(1+y^{2}\right)^{2}} & \frac{\sin \pi x\left[-2+6 y^{2}\right]}{\left(1+y^{2}\right)^{3}}
\end{array}\right] .}
\end{array}
$$

At the given point,

$$
H_{f}(1 / 2,0)=\left(\begin{array}{cc}
-\pi^{2} & 0 \\
0 & -2
\end{array}\right)
$$

Because $d_{1}=-\pi^{2}<0$ and $d_{2}=|H|=-\pi^{2}(-2)=2 \pi^{2}>0$ we conclude that is a local maximum.
B. A engineering is working with two mechanical arms with movements in a plane. To make a labor minimising the effort, he found that the optimal trajectories of the arm hands are $\mathbf{m}_{\mathbf{1}}(t)=\left(t^{2}-2, \frac{t^{2}}{2}-1\right)$ and $\mathbf{m}_{\mathbf{2}}(t)=\left(t, 5-t^{2}\right)$, where t represents time measured in seconds. Before running the experiment, he simulated the trajectories and found out that collide.
(a) (1 point) When and where do the arms collide?
(b) (1 point) What is the angle formed by the paths of the arms at the collision point?

Figure 2: Function $f(x, y)=\frac{\sin \pi x}{1+y^{2}}$ from $2 \mathbf{A}$.

SOLUTION

(a) We have to intersect both paths to find the collision point, $\mathbf{m}_{\mathbf{1}}(t)=\mathbf{m}_{\mathbf{2}}(t)$. This yields in the following equations:

$$
\left\{\begin{array}{lcc}
t & =t^{2}-2 & \rightarrow t^{2}-t-2=0 \rightarrow t=2 \text { or }-1 \\
5-t^{2} & =\frac{t^{2}}{2}-1 & \rightarrow 3 t^{2}=12 \rightarrow t= \pm 2
\end{array}\right.
$$

So the only solution for both equations is $t=2 \mathrm{~s}$. Then the collision point is $\mathbf{m}_{\mathbf{1}}(2)=$ $\mathbf{m}_{\mathbf{2}}(2)=(2,1)$.
(b) The direction of the path is given by the velocity vector (vector tangent to the path). At the collision point, this vectors are:

$$
\begin{cases}\mathbf{m}_{\mathbf{1}}^{\prime}(t)=(2 t, t) & \rightarrow \mathbf{m}_{\mathbf{1}}^{\prime}(2)=(4,2) \\ \mathbf{m}_{\mathbf{2}}^{\prime}(t)=(1,-2 t) & \rightarrow \mathbf{m}_{\mathbf{2}}^{\prime}(2)=(1,-4)\end{cases}
$$

On the other hand, the dot product between two vectors is $\langle a, b\rangle=\|a\|\|b\| \cos \theta$. So,

$$
\cos \theta=\frac{<a, b>}{\|a\|\|b\|}=\frac{4-8}{\sqrt{20} \sqrt{17}}=-0.2169 \rightarrow \theta \approx 1.78 \mathrm{rad} \approx 102.52^{\circ}
$$

3. (2 points) Suppose you are working doing artificial organs/tissues and you have a method to print in 3D materials with varying density. For a first test you decide to print a tissues that is modelled as the solid bounden by the surface $z=1-x^{2}$ and the planes $z=0, y=1$ and $y=-1$, as shown in the next figure.

Figure 3: Artificial tissue.

Suppose also that the density is varying according to the function $g(x, y, z)=z(x+2)$. Compute the total mass of the tissue.

SOLUTION

We have to integrate the density function over the tissue region to get the total mass. The tissue is a region of type 1 in \mathbb{R}^{3}. It is delimited in the $x y$-plane (projection), as the statement says, by $-1 \leq y \leq 1$ and x limits have to be found. Because, when making $z=0$ we get that $0=1-x^{2} \rightarrow x= \pm 1, x$ is also in $[-1,1]$.
So the integration region is,

$$
W=\left\{(x, y, z) \in \mathbb{R}^{3}:-1 \leq x \leq 1,-1 \leq y \leq 1,0 \leq z \leq 1-x^{2}\right\}
$$

Now we compute the mass,

$$
\begin{aligned}
M & =\iiint_{W} g d W=\int_{-1}^{1} \int_{-1}^{1}\left(\int_{0}^{1-x^{2}} z(x+2) d z\right) d y d x \\
& =\int_{-1}^{1} \int_{-1}^{1} \frac{\left(1-x^{2}\right)^{2}}{2}(x+2) d y d x=\ldots=\frac{32}{15}
\end{aligned}
$$

4. (2 points) Evaluate $\oint_{C}\left(x^{4} y^{5}-2 y\right) d x+\left(3 x+x^{5} y^{4}\right) d y$, where C is the oriented curve pictured below.

SOLUTION

Because is a closed curve in a vector field of class C^{1} we can apply the Green theorem. We note that the curve is oriented on the opposite sense of the Green theorem, so we have to add a minus in the equality.
We see that $M(x, y)=x^{4} y^{5}-2 y$ and $N(x, y)=3 x+x^{5} y^{4}$, so $M_{y}=5 x^{4} y^{4}-2$ and $N_{x}=$ $3+5 x^{4} y^{4}$. Let D be the region enclosed by the closed curve C. Then,

Figure 4: Oriented curve C.

$$
\begin{aligned}
& \oint M d x+N d y=-\iint_{D}\left(N_{x}-M_{y}\right) d x d y=-\iint_{D}\left(3+5 x^{4} y^{4}\right)-\left(5 x^{4} y^{4}-2\right) d x d y= \\
& -\iint_{D} 5 d x d y=-5 \cdot \operatorname{Area}(\mathrm{D})=-5(2+3+4)=-45
\end{aligned}
$$

5. Consider the curve $r(t)=(\cos t, \sin t,(a \cos t+b \sin t))$ with $0 \leq t \leq 2 \pi$, where $a, b \in \mathbb{R}$ are constants.
(a) (1 point) Compute the work done by the vector field $\mathbf{F}=(y, z-x,-y)$ in a particle moving along r.
(b) (1 point) Compute the values of a, b such that the work done is null. Does this mean that the vector field is conservative? Reasonate the answer.

SOLUTION

(a) The work is,

$$
\begin{array}{r}
W=\int_{r} \mathbf{F} d \mathbf{s}=\int_{0}^{2 \pi} F(r(t)) \cdot r^{\prime}(t) d t= \\
\int_{0}^{2 \pi}(\sin t, a \cos t+b \sin t-\cos t,-\sin t) \cdot(-\sin t, \cos t,-a \sin t+b \cos t) d t= \\
\int_{0}^{2 \pi}-\sin ^{2} t+a \cos ^{2} t+b \sin t \cos t-\cos ^{2} t+a \sin ^{2} t-b \sin t \cos t d t= \\
\int_{0}^{2 \pi} a\left(\cos ^{2} t+\sin ^{2} t\right)-1 d t=\int_{0}^{2 \pi} a-1 d t=2 \pi(a-1)
\end{array}
$$

(b) $W=0 \Longleftrightarrow a=1, b \in \mathbb{R}$. It just mean that the work is zero over that path. To check that is conservative we may calculate the rotational, $\operatorname{rot}(\mathbf{F})=(-2,0,-2)$. Because the rotational is not zero the vector field is not conservative.

